Is "GOD" just another Equation?
22 posts
• Page 2 of 3 • 1, 2, 3
God doesn't fit into any equation because God can be 'all', 'nothing', consciousness, love, energy ... we will never know, never be able to measure this.
What does fit into equations are the manifestations in this world, the structure of this world, we're approaching this point in science, could be 'there' already if science didn't ban the idea of 'aether' some hundred years ago, didn't 'simplify' Maxwell's laws.
Now they will need infinite amounts of energy to get 'little', the other way around only a weak attractor is needed to get infinite energy, create matter.
What does fit into equations are the manifestations in this world, the structure of this world, we're approaching this point in science, could be 'there' already if science didn't ban the idea of 'aether' some hundred years ago, didn't 'simplify' Maxwell's laws.
Now they will need infinite amounts of energy to get 'little', the other way around only a weak attractor is needed to get infinite energy, create matter.
Follow your bliss(ters)  Joseph Campbell
 Iamthatiam
 Posts: 5478
 Joined: Mon Jan 24, 2011 4:03 pm
 Location: བདེ་འབྱུང
Svaha wrote:God doesn't fit into any equation because God can be 'all', 'nothing', consciousness, love, energy ... we will never know, never be able to measure this.
So the being you refer to as 'God' does not fits on the word 'God', as well...How to know then you are mentioning the entity you want to, if that cannot be represented in any way?
"The Heaven's Lights are fed by the energy generated inside the furnaces of Hell; I AM One Conductive Wire! "
 Iamthatiam
 Posts: 5478
 Joined: Mon Jan 24, 2011 4:03 pm
 Location: བདེ་འབྱུང
"To every consistent recursive class of formulas, there correspond recursive classsigns such that neither ( Gen ) nor Neg( Gen ) belongs to Flg(), where is the free variable of "Kurt Gödel
"The Heaven's Lights are fed by the energy generated inside the furnaces of Hell; I AM One Conductive Wire! "
 Iamthatiam
 Posts: 5478
 Joined: Mon Jan 24, 2011 4:03 pm
 Location: བདེ་འབྱུང
Consider a line segment of unit length. Remove its middle third. Now remove the middle thirds from the remaining two segments. Now remove the middle thirds from the remaining four segments. Now remove the middle thirds from the remaining eight segments. Now remove ... well, you get the idea. If you could continue this construction through infinitely many steps, what would you have left?
What remains after infinitely many steps is a remarkable subset of the real numbers called the Cantor set, or “Cantor’s Dust.”
At first glance one may reasonably wonder if there is anything left. After all, the lengths of the intervals we removed all add up to 1, exactly the length of the segment we started with:
Yet, remarkably, we can show that there are just as many “points” remaining as there were before we began! This startling fact is only one of the many surprising properties exhibited by the Cantor set.
Before we begin to expose these properties, it is important to be quite precise about this construction. Let us agree that the segments we remove at each stage of the construction are open intervals. That is, in the first step we remove all of the points between 1/3 and 2/3, but leave the end points, and similarly for each successive stage. A little reflection will convince you that these endpoints we leave behind never get removed, since at each stage we are only removing parts that lie strictly between the endpoints left behind at the previous stage. Thus we see that our Cantor set cannot be empty, since it contains 0, 1, 1/3, 2/3, 1/9, 2/9, 7/9, 8/9, 1/27, and so on.
But in fact there is much more that remains. To see this, recall that we may choose any number base to represent real numbers. That is, there is nothing necessary or even special about our common use of base ten; we can just as easily represent our numbers using base two, or base three, or any other base.
When a number is written in base two it is said to be in binary notation, and when it is written in base three it is said to be in ternary notation. Let's focus on the ternary representations of the decimals between 0 and 1. Since, in base three, 1/3 is equal to 0.1, and 2/3 is equal to 0.2, we see that in the first stage of the construction (when we removed the middle third of the unit interval) we actually removed all of the real numbers whose ternary decimal representation have a 1 in the first decimal place, except for 0.1 itself. (Also, 0.1 is the same as 0.0222... in base three, so if we choose this representation we are removing all the ternary decimals with 1 in the first decimal place.) In the same way, the second stage of the construction removes all those ternary decimals that have a 1 in the second decimal place.
The third stage removes those with a 1 in the third decimal place, and so on. (Convince yourself that this is so. Begin by noticing that 1/9 is equal to 0.01 and 2/9 is equal to 0.02 in base three.)
Thus, after everything has been removed, the numbers that are left – that is, the numbers making up the Cantor set – are precisely those whose ternary decimal representations consist entirely of 0’s and 2’s. What numbers does this include, besides the ones already noted above? How many are there?
Lots. Consider 1/4. This is not one of the endpoints (those all have powers of three in the denominator), but it is not hard to show that 1/4 is in the Cantor set. Begin by writing 4 in ternary notation (as 11 – one “1” plus one “3”), and then use long division to get its ternary decimal representation:
Since the decimal expansion of 1/4 consists entirely of 0’s and 2’s, it was never removed during the construction of the Cantor set, so it's still there ... somewhere!
Asking how many numbers are left, as you can easily see, is to ask how many numbers can be represented in ternary notation with no “1” in any decimal place. But this must be as many as there are real numbers in the unit interval – for consider: we may represent all the real numbers between 0 and 1 in binary, and this is just every possible decimal with a 1 or a 0 in each decimal place. And there can be no more and no less of these than there are ternary decimals with a 0 or a 2 in each decimal place. They correspond in an obvious way.
The conclusion is inescapable: once we remove all those intervals, the number of points remaining is no less than the number we started with. (If this seems inconceivable to you, you might wish to read the Infinity Minitext.)
Let us examine that “correspondence” more closely. The idea is evident: for every number whose ternary decimal expansion consists entirely of 0’s and 2’s, match it with the corresponding number whose binary decimal expansion has 0’s in the same place, and 1’s wherever the ternary number had 2’s. Thus, 1/4 in ternary gets matched with 1/3 in binary:
This is evidently a function that is surjective. Moreover, it is continuous. (Elements that are “close” in the domain are mapped to elements that are “close” in the range.)
We can extend this to a function, called the Cantor function, from the entire unit interval onto itself, by simply agreeing to let its value on the missing intervals be the constant values which equal the values of the original function on the endpoints of those intervals. For example, the Cantor function will map each point in the first middlethird interval (1/3, 2/3) to 1/2, the value of the original function on the points 1/3 and 2/3. (Recall that 1/3 has ternary representation 0.0222... and 2/3 has ternary representation 0.2, which map to 0.0111... and 0.1 respectively, and these both represent the number 1/2 in binary.) If we were to attempt to graph this function, it would look like this:
The flat parts are the images of all of the “middle thirds,” and these are all connected by the images of the Cantor set itself. This construction has been called the “Devil's Staircase” since it has infinitely many “steps.”
A few more analytical tidbits: Since each interval removed was open, and there were only countably many of them, their union is also open. Thus, the Cantor set (which is the complement of this union) is closed. That is, it contains all of its accumulation points. Moreover, every point of the Cantor set is an accumulation point, since within any neighborhood of a number whose ternary expansion consists entirely of 0’s and 2’s one may find other such numbers. Consequently, the Cantor set is a perfect set in the topologist’s sense. Finally, since any open neighborhood of any point of the Cantor set contains an open set which is disjoint from the Cantor set, we have that the Cantor set is nowhere dense. Altogether a remarkable set.
ADDENDUM:
Many have gotten to know the Cantor set as a fractal. We touch here briefly on these properties. Let us again visualize the construction:
Although the Cantor set itself is to be thought of as the “final row” in this picture, the picture considered altogether is very suggestive. Notice that at each stage the picture is “doubled” into two copies which precisely resemble the whole, but which at each stage become twothirds smaller.
Together these properties – selfsimilarity at every scale over a uniform reduction of scale – qualify the Cantor set as a fractal with Hausdorf dimension given by:
The Cantor set is an instructively simple example of a fractal, demonstrating that our geometrical intuitions about space (even such simple spaces as the unit interval) can fail to capture much of the deep structure inherent in those very intuitions.
What remains after infinitely many steps is a remarkable subset of the real numbers called the Cantor set, or “Cantor’s Dust.”
At first glance one may reasonably wonder if there is anything left. After all, the lengths of the intervals we removed all add up to 1, exactly the length of the segment we started with:
Yet, remarkably, we can show that there are just as many “points” remaining as there were before we began! This startling fact is only one of the many surprising properties exhibited by the Cantor set.
Before we begin to expose these properties, it is important to be quite precise about this construction. Let us agree that the segments we remove at each stage of the construction are open intervals. That is, in the first step we remove all of the points between 1/3 and 2/3, but leave the end points, and similarly for each successive stage. A little reflection will convince you that these endpoints we leave behind never get removed, since at each stage we are only removing parts that lie strictly between the endpoints left behind at the previous stage. Thus we see that our Cantor set cannot be empty, since it contains 0, 1, 1/3, 2/3, 1/9, 2/9, 7/9, 8/9, 1/27, and so on.
But in fact there is much more that remains. To see this, recall that we may choose any number base to represent real numbers. That is, there is nothing necessary or even special about our common use of base ten; we can just as easily represent our numbers using base two, or base three, or any other base.
When a number is written in base two it is said to be in binary notation, and when it is written in base three it is said to be in ternary notation. Let's focus on the ternary representations of the decimals between 0 and 1. Since, in base three, 1/3 is equal to 0.1, and 2/3 is equal to 0.2, we see that in the first stage of the construction (when we removed the middle third of the unit interval) we actually removed all of the real numbers whose ternary decimal representation have a 1 in the first decimal place, except for 0.1 itself. (Also, 0.1 is the same as 0.0222... in base three, so if we choose this representation we are removing all the ternary decimals with 1 in the first decimal place.) In the same way, the second stage of the construction removes all those ternary decimals that have a 1 in the second decimal place.
The third stage removes those with a 1 in the third decimal place, and so on. (Convince yourself that this is so. Begin by noticing that 1/9 is equal to 0.01 and 2/9 is equal to 0.02 in base three.)
Thus, after everything has been removed, the numbers that are left – that is, the numbers making up the Cantor set – are precisely those whose ternary decimal representations consist entirely of 0’s and 2’s. What numbers does this include, besides the ones already noted above? How many are there?
Lots. Consider 1/4. This is not one of the endpoints (those all have powers of three in the denominator), but it is not hard to show that 1/4 is in the Cantor set. Begin by writing 4 in ternary notation (as 11 – one “1” plus one “3”), and then use long division to get its ternary decimal representation:
Since the decimal expansion of 1/4 consists entirely of 0’s and 2’s, it was never removed during the construction of the Cantor set, so it's still there ... somewhere!
Asking how many numbers are left, as you can easily see, is to ask how many numbers can be represented in ternary notation with no “1” in any decimal place. But this must be as many as there are real numbers in the unit interval – for consider: we may represent all the real numbers between 0 and 1 in binary, and this is just every possible decimal with a 1 or a 0 in each decimal place. And there can be no more and no less of these than there are ternary decimals with a 0 or a 2 in each decimal place. They correspond in an obvious way.
The conclusion is inescapable: once we remove all those intervals, the number of points remaining is no less than the number we started with. (If this seems inconceivable to you, you might wish to read the Infinity Minitext.)
Let us examine that “correspondence” more closely. The idea is evident: for every number whose ternary decimal expansion consists entirely of 0’s and 2’s, match it with the corresponding number whose binary decimal expansion has 0’s in the same place, and 1’s wherever the ternary number had 2’s. Thus, 1/4 in ternary gets matched with 1/3 in binary:
This is evidently a function that is surjective. Moreover, it is continuous. (Elements that are “close” in the domain are mapped to elements that are “close” in the range.)
We can extend this to a function, called the Cantor function, from the entire unit interval onto itself, by simply agreeing to let its value on the missing intervals be the constant values which equal the values of the original function on the endpoints of those intervals. For example, the Cantor function will map each point in the first middlethird interval (1/3, 2/3) to 1/2, the value of the original function on the points 1/3 and 2/3. (Recall that 1/3 has ternary representation 0.0222... and 2/3 has ternary representation 0.2, which map to 0.0111... and 0.1 respectively, and these both represent the number 1/2 in binary.) If we were to attempt to graph this function, it would look like this:
The flat parts are the images of all of the “middle thirds,” and these are all connected by the images of the Cantor set itself. This construction has been called the “Devil's Staircase” since it has infinitely many “steps.”
A few more analytical tidbits: Since each interval removed was open, and there were only countably many of them, their union is also open. Thus, the Cantor set (which is the complement of this union) is closed. That is, it contains all of its accumulation points. Moreover, every point of the Cantor set is an accumulation point, since within any neighborhood of a number whose ternary expansion consists entirely of 0’s and 2’s one may find other such numbers. Consequently, the Cantor set is a perfect set in the topologist’s sense. Finally, since any open neighborhood of any point of the Cantor set contains an open set which is disjoint from the Cantor set, we have that the Cantor set is nowhere dense. Altogether a remarkable set.
ADDENDUM:
Many have gotten to know the Cantor set as a fractal. We touch here briefly on these properties. Let us again visualize the construction:
Although the Cantor set itself is to be thought of as the “final row” in this picture, the picture considered altogether is very suggestive. Notice that at each stage the picture is “doubled” into two copies which precisely resemble the whole, but which at each stage become twothirds smaller.
Together these properties – selfsimilarity at every scale over a uniform reduction of scale – qualify the Cantor set as a fractal with Hausdorf dimension given by:
The Cantor set is an instructively simple example of a fractal, demonstrating that our geometrical intuitions about space (even such simple spaces as the unit interval) can fail to capture much of the deep structure inherent in those very intuitions.
"The Heaven's Lights are fed by the energy generated inside the furnaces of Hell; I AM One Conductive Wire! "
Iamthatiam wrote:Svaha wrote:God doesn't fit into any equation because God can be 'all', 'nothing', consciousness, love, energy ... we will never know, never be able to measure this.
So the being you refer to as 'God' does not fits on the word 'God', as well...How to know then you are mentioning the entity you want to, if that cannot be represented in any way?
God is an invention of humans, trying to describe something that can't be talked about, only experienced, something natives call big mystery, something that's omitted in ancient symbols, that's why it was 'forbidden' to name the real name of God.
Because it's a human invention, but not real, every human has a different image of God (or any other word like for instance Allah), none of them fits the real deal, can't be captured in an equation.
Natives knew this, that's why they only talked about duality (tonal world), the creating male/female principles and the four great primary forces (swastica) which were used in Creation, and are now governing the movements of all bodies throughout the universe.
Scientists haven't even started to understand this because we only 'see' atmost half of duality, the male halve with the two primary male forces (elements) fire and air, the other halve, the female halve with the elements earth and water is unknown territory (with few exceptions, for instance on water Schauberger)
This all has also consequences on every level, because we 'deny' one half of duality we live in a linear world, all our doings are linear, because of the 'male' we use only explosion, expansion, no contraction, that's why we're heading for a big wall, a singularity.
Entering the singularity without releasing the mind fuck will lead to a certain death.
In the video you find a description of a 'black hole' that's actualy imo true, starting at 7 minutes, science can describe the female and male parts, but not what looks like pure consciousness beyond anything in the singularity :
Follow your bliss(ters)  Joseph Campbell
 SamueltheLion
 Posts: 2556
 Joined: Mon Mar 01, 2010 11:23 pm
 Location: 'Happiness is the angle at which the wise are gathered'
initial response:
god is not "another" equation, god is THE equation.
god is that which allows YOU to unravel equations when you prove yourself worthy, exploring all aspects and dimensions of Self, growing the "little me" into the "great we".
The all that is within all, reconnecting.
as IamthatIam asked me to reply to you svaha, i'll do so with joy, always a pleasure to read your replies as is.
cheers people
god is not "another" equation, god is THE equation.
god is that which allows YOU to unravel equations when you prove yourself worthy, exploring all aspects and dimensions of Self, growing the "little me" into the "great we".
The all that is within all, reconnecting.
He is too great to be called "God."He is hidden, yet obvious everywhere.
He is bodiless, yet embodied in everything.
There is nothing that He is not. He has no name, because all names are
His name. He is unity of all things, so we must know Him
by all names and call everything "God."
HermesTrismegistos
excerpt from the tower of alchemy
as IamthatIam asked me to reply to you svaha, i'll do so with joy, always a pleasure to read your replies as is.
cheers people
Your faith will make you whole
It's interesting to read everyone's responses to this question, some go down the path of science and some choose spirituality. Religions are created and would not exist without being devised by man. I do believe though that faith and belief are inherent in all of us and needn't be prescribed to "God". Passion creates a longing in us to understand our existence and through science and religion we ultimately are striving to answer the same fundamental questions. With knowledge comes great responsibility and it doesn't matter what side of the fence you choose to stand on, you still need to be cautious about how you deliver your findings.
I think this quote pretty much sums it up for me and I know some won't agree but we are not here to shore each other up in our reasoning's
“The knowledge of God is very far from the love of Him.”
Blaise Pascal 16231662
I think this quote pretty much sums it up for me and I know some won't agree but we are not here to shore each other up in our reasoning's
“The knowledge of God is very far from the love of Him.”
Blaise Pascal 16231662
22 posts
• Page 2 of 3 • 1, 2, 3

 Related topics
 Replies
 Views
 Last post

 Harmonic equation of ascention
by anuki » Mon Sep 13, 2010 4:27 pm  1 Replies
 580 Views
 Last post by bloodbank
Mon Sep 13, 2010 4:59 pm
 Harmonic equation of ascention

 Carl Sagan Explains the Drake Equation
by astroboy777 » Wed Nov 09, 2011 5:56 pm  2 Replies
 283 Views
 Last post by astroboy777
Wed Nov 09, 2011 7:20 pm
 Carl Sagan Explains the Drake Equation